Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.047
Filtrar
1.
Front Pediatr ; 12: 1328506, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560398

RESUMO

Background: In 2022, the United States experienced a national shortage of infant formula due to a global supply chain crisis and a large-scale domestic formula recall. The existing literature on healthcare providers' (HCPs) clinical decision-making during formula shortages is limited. This study aims to analyze the factors influencing pediatric HCP clinical decision-making when switching between amino acid formulas (AAF) for managing cow's milk protein allergy (CMPA) in infants under 24 months of age during an unprecedented national formula shortage. Methods: The study included pediatric HCPs with experience managing CMPA in infants and toddlers under 24 months during the formula shortage from January 2022 to November 2022. A de-identified survey comprising 26 questions examining driving factors used in clinical decision-making was administered to pediatric HCPs using a real-time mobile data collection tool. Results: Among the surveyed pediatric HCPs (n = 75), the factors most frequently considered as "extremely important" when switching to another AAF included safety (85%), tolerability (73%), and efficacy (83%). No statistically significant differences were found in HCP ratings among the listed examined factors of the four AAFs. The availability of specific formulas was the only factor that exhibited a statistically significant difference in perceived performance among pediatric HCPs when comparing the four AAFs (p < 0.05). Discussion: This study elucidates the crucial aspects that influenced pediatric HCPs' selection of AAFs for CMPA management during the 2022 formula shortage. The findings highlight the significance of safety, tolerability, efficacy, and availability in the pediatric HCP decision-making processes.

2.
ArXiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38560734

RESUMO

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a wide range of behavioral and cognitive impairments. While genetic and environmental factors are known to contribute to its etiology, the underlying metabolic perturbations associated with ASD which can potentially connect genetic and environmental factors, remain poorly understood. Therefore, we conducted a metabolomic case-control study and performed a comprehensive analysis to identify significant alterations in metabolite profiles between children with ASD and typically developing (TD) controls. Objective: To elucidate potential metabolomic signatures associated with ASD in children and identify specific metabolites that may serve as biomarkers for the disorder. Methods: We conducted metabolomic profiling on plasma samples from participants in the second phase of Epidemiological Research on Autism in Jamaica (ERAJ-2), which was a 1:1 age (±6 months)-and sex-matched cohort of 200 children with ASD and 200 TD controls (2-8 years old). Using high-throughput liquid chromatography-mass spectrometry techniques, we performed a targeted metabolite analysis, encompassing amino acids, lipids, carbohydrates, and other key metabolic compounds. After quality control and imputation of missing values, we performed univariable and multivariable analysis using normalized metabolites while adjusting for covariates, age, sex, socioeconomic status, and child's parish of birth. Results: Our findings revealed unique metabolic patterns in children with ASD for four metabolites compared to TD controls. Notably, three of these metabolites were fatty acids, including myristoleic acid, eicosatetraenoic acid, and octadecenoic acid. Additionally, the amino acid sarcosine exhibited a significant association with ASD. Conclusions: These findings highlight the role of metabolites in the etiology of ASD and suggest opportunities for the development of targeted interventions.

3.
Arch Gerontol Geriatr ; 123: 105424, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38565071

RESUMO

BACKGROUND: Lipid metabolism disorders appear to play an important role in the ageing process, thus understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to lipid metabolism related diseases is crucial towards promoting quality of life in old age. MicroRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism, and some miRNAs have key roles in ageing. METHODS: In this study, we investigated changes in liver lipid metabolism of ageing mice and the mechanisms of the altered expression of miRNAs in the ageing liver which contributes to the age-dependent increase in lipid synthesis. Here we found that miR-743b-3p was higher expressed in the liver tissues of ageing mice through the small RNA sequencing and bioinformatics analysis, and its target PPM1K was predicted and confirmed the target relationship of miR-743b-3p with PPM1K in the aged mouse liver tissues and the cultured senescent hepatocytes in vitro. Moreover, using the transfected miR-743b-3p mimics/inhibitors into the senescent hepatocyte AML12. RESULTS: We found that miR-743b-3p inhibition reversed the hepatocyte senescence, and finally decreased the expression of genes involved in lipid synthesis(Chrebp, Fabp4, Acly and Pparγ) through increasing the target gene expression of PPM1K which regulated the expression of branched-chain amino acids (BCAA) metabolism-related genes (Bckdhα, Bckdk, Bcat2, Dbt). CONCLUSIONS: These results identify that age-induced expression of miR-743b-3p inhibits its target PPM1K which induces BCAA metabolic disorder and regulates hepatocyte lipid accumulation during ageing.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38567963

RESUMO

Reducing the dietary crude protein (CP) could effectively reduce pressure on protein ingredient supplies. However, few data have been reported about the extent to which CP can be reduced and whether limiting the use of soybean meal leads to electrolyte imbalance. In this experiment, using the low protein (LP) diet [2% lower than NRC (2012)], seventy-two piglets (35 days old) were randomly divided into 2 groups with 6 replicates of 6 piglets each: CON group (CP = 18.5%) and LP group (CP = 16.5%), to investigate the effect of the LP diet on electrolyte balance, acid-base balance, intestinal structure and amino acid transport in piglets. The results revealed that the LP diet decreased the average daily gain and dietary CP digestibility, and damaged the villi structure of the small intestine. Compared with the CON diet, the potassium content decreased and the chlorine content increased in the LP diet, and similar trends were shown in piglet serum. The arterial pH, pCO2, HCO3 -, and base excess of piglets in the LP group were lower than those in the CON group, while pO2 was higher than those in the CON group. Interestingly, the LP diet significantly increased the lysine content in piglet serum and significantly decreased the levels of arginine, leucine, and glutamic acid. Furthermore, the LP diet significantly affected the expression of some amino acid transport vectors (B0AT1, EAAC1, and y+LAT1). In summary, these findings suggested that the LP diet leads to acid-base imbalance, amino acid transport disorder and amino acids imbalance in piglets, and the dietary electrolyte may be a key factor in the impact of the LP diet on piglet growth performance and intestinal health.

5.
Biotechnol Prog ; : e3464, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558519

RESUMO

Amino acids are vital components of the serum-free medium that influence the expansion and function of NK cells. This study aimed to clarify the relationship between amino acid metabolism and expansion and cytotoxicity of NK cells. Based on analyzing the mino acid metabolism of NK-92 cells and Design of Experiments (DOE), we optimized the combinations and concentrations of amino acids in NK-92 cells culture medium. The results demonstrated that NK-92 cells showed a pronounced demand for glutamine, serine, leucine, and arginine, in which glutamine played a central role. Significantly, at a glutamine concentration of 13 mM, NK-92 cells expansion reached 161.9 folds, which was significantly higher than 55.5 folds at 2.5 mM. Additionally, under higher glutamine concentrations, NK-92 cells expressed elevated levels of cytotoxic molecules, the level of cytotoxic molecules expressed by NK-92 cells was increased and the cytotoxic rate was 68.42%, significantly higher than that of 58.08% under low concentration. In view of the close relationship between glutamine metabolism and intracellular redox state, we investigated the redox status within the cells. This study demonstrated that intracellular ROS levels in higher glutamine concentrations were significantly lower than those under lower concentration cultures with decreased intracellular GSH/GSSG ratio, NADPH/NADP+ ratio, and apoptosis rate. These findings indicate that NK-92 cells exhibit improved redox status when cultured at higher glutamine concentrations. Overall, our research provides valuable insights into the development of serum-free culture medium for ex vivo expansion of NK-92 cells.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38574253

RESUMO

Background: Clonorchiasis remains a serious public health problem. However, the molecular mechanism underlying clonorchiasis remains largely unknown. Amino acid (AA) metabolism plays key roles in protein synthesis and energy sources, and improves immunity in pathological conditions. Therefore, this study aimed to explore the AA profiles of spleen in clonorchiasis and speculate the interaction between the host and parasite. Methods: Here targeted ultrahigh performance liquid chromatography multiple reaction monitoring mass spectrometry was applied to discover the AA profiles in spleen of rats infected with Clonorchis sinensis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was performed to characterize the dysregulated metabolic pathways. Results: Pathway analysis revealed that phenylalanine, tyrosine, and tryptophan biosynthesis and ß-alanine metabolism were significantly altered in clonorchiasis. There were no significant correlations between 14 significant differential AAs and interleukin (IL)-1ß. Although arginine, asparagine, histidine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine were positively correlated with IL-6, IL-10, tumor necrosis factor (TNF)-α as well as aspartate aminotransferase and alanine aminotransferase; ß-alanine and 4-hydroxyproline were negatively correlated with IL-6, IL-10, and TNF-α. Conclusion: This study reveals the dysregulation of AA metabolism in clonorchiasis and provides a useful insight of metabolic mechanisms at the molecular level.

7.
J Biol Chem ; : 107270, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599381

RESUMO

Higher demand for nutrients including glucose is characteristic of cancer. "Starving cancer" has been pursued to curb tumor progression. An ,intriguing regime is to inhibit glucose transporter GLUT1 in cancer cells. In addition, during cancer progression, cancer cells may suffer from insufficient glucose supply. Yet cancer cells can somehow tolerate glucose starvation. Uncovering the underlying mechanisms shall not only shed insight into cancer progression but also benefit cancer therapy. TFE3 is a transcription factor known to activate autophagic genes. Physiological TFE3 activity is regulated by phosphorylation-triggered translocation responsive to nutrient status. We recently reported TFE3 constitutively localizes to the cell nucleus and promotes cell proliferation in kidney cancer even under nutrient replete condition. Whether and how TFE3 responds to glucose starvation remain unclear. In this study, we show TFE3 promotes kidney cancer cell resistance to glucose starvation by exposing cells to physiologically relevant glucose concentration. We find glucose starvation triggers TFE3 protein stabilization through increasing its O-GlcNAcylation. Furthermore, through an unbiased functional genomic study, we identify SLC36A1, a lysosomal amino acid transporter, as a TFE3 target gene sensitive to TFE3 protein level. We find SLC36A1 is overexpressed in kidney cancer, which promotes mTOR activity and kidney cancer cell proliferation. Importantly, SLC36A1 level is induced by glucose starvation through TFE3, which enhances cellular resistance to glucose starvation. Suppressing TFE3 or SLC36A1 significantly increases cellular sensitivity to GLUT1 inhibitor in kidney cancer cells. Collectively, we uncover a functional TFE3-SLC36A1 axis that responds to glucose starvation and enhances starvation tolerance in kidney cancer.

8.
Am J Bot ; : e16310, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600732

RESUMO

PREMISE: The origin of diversity is a fundamental biological question. Gene duplications are one mechanism that provides raw material for the emergence of novel traits, but evolutionary outcomes depend on which genes are retained and how they become functionalized. Yet, following different duplication types (polyploidy and tandem duplication), the events driving gene retention and functionalization remain poorly understood. Here we used Cakile maritima, a species that is tolerant to salt and heavy metals and shares an ancient whole-genome triplication with closely related salt-sensitive mustard crops (Brassica), as a model to explore the evolution of abiotic stress tolerance following polyploidy. METHODS: Using a combination of ionomics, free amino acid profiling, and comparative genomics, we characterize aspects of salt stress response in C. maritima and identify retained duplicate genes that have likely enabled adaptation to salt and mild levels of cadmium. RESULTS: Cakile maritima is tolerant to both cadmium and salt treatments through uptake of cadmium in the roots. Proline constitutes greater than 30% of the free amino acid pool in C. maritima and likely contributes to abiotic stress tolerance. We find duplicated gene families are enriched in metabolic and transport processes and identify key transport genes that may be involved in C. maritima abiotic stress tolerance. CONCLUSIONS: These findings identify pathways and genes that could be used to enhance plant resilience and provide a putative understanding of the roles of duplication types and retention on the evolution of abiotic stress response.

9.
Colloids Surf B Biointerfaces ; 239: 113882, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593511

RESUMO

Bacterial infections threaten public health, and novel therapeutic strategies critically demand to be explored. Herein, poly(amino acid) (PAA)-based drug delivery nanoparticles (NPs) were designed for eliminating Methicillin resistant Staphylococcus aureus (MRSA) via tunable release of antibiotic. Using N-acryloyl amino acids (valine, valine methyl ester, aspartic acid, serine) as monomers, four kinds of amphiphilic PAAs were synthesized via photoinduced electron/energy transfer-reversible addition fragmentation chain-transfer (PET-RAFT) polymerization and were further assembled into nano-sized delivery systems. Their assemble behavior was drove mainly by hydrophobic/hydrophilic interaction, which determined the particle size, efficacy of drug loading and release; but numerous hydrogen bonding (HB) interaction also played an important role in regulating morphologies of the NPs and enriching drug-binding capacity. By changing the HB- and hydrophobic-interaction of the PAAs, the particle sizes (240.7 nm-302.7 nm), the drug loading efficiency (9.57%-19.76%), and the Rifampicin (Rif) release rate (49.6%-69.7%) of the PAA-based NPs could be tunable. Specially, the antimicrobial properties of the Rif-loaded NPs are found to be related to the release of Rif, which was determined by its hydrophobic interaction with hydrophobic blocks and HB interaction with hydrophilic blocks. These studies provide a new outlook for the design of delivery systems for the therapy of bacterial infection.

10.
Angew Chem Int Ed Engl ; : e202401635, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597773

RESUMO

The introduction of an abiological catalytic group into the binding pocket of a protein host allows for the expansion of enzyme chemistries. Here, we report the generation of an artificial enzyme by genetic encoding of a non-canonical amino acid that contains a secondary amine side chain. The non-canonical amino acid and the binding pocket function synergistically to catalyze the asymmetric nitrocyclopropanation of α,ß-unsaturated aldehydes by the iminium activation mechanism. The designer enzyme was evolved to an optimal variant that catalyzes the reaction in high yield with high diastereo- and enantioselectivity. This work demonstrates the application of genetic code expansion in enzyme design and expands the scope of enzyme-catalyzed abiological reactions.

11.
Sci Rep ; 14(1): 8017, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580836

RESUMO

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Assuntos
Diamino Aminoácidos , Decápodes , Síndromes Neurotóxicas , Animais , Masculino , Feminino , Humanos , Nephropidae/metabolismo , Ecossistema , Neurotoxinas/toxicidade , Diamino Aminoácidos/metabolismo , Alimentos Marinhos/análise , Decápodes/metabolismo , beta-Alanina
12.
EFSA J ; 22(4): e8726, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38585213

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of l-isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 as a nutritional feed additive for use in feed and in water for drinking for all animal species. The production strain is non-genetically modified, qualifies for the QPS approach to safety assessment when used for production purposes, is susceptible to the relevant antibiotics and contains no antimicrobial resistance genes of concern. No viable cells of the production strain were detected in the final product. The additive does not give rise to any safety concern regarding the production strain. l-Isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 is considered safe for the target species, the consumer and the environment. Regarding the use in water, the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) reiterates its concerns over the safety for the target species of l-isoleucine administered simultaneously via water for drinking and feed owing to the risk of nutritional imbalances and hygienic reasons. In the absence of data, the FEEDAP Panel is not in a position to conclude on the potential of l-isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 to be irritant to skin and/or eyes, or as a dermal sensitiser. Due to the high dusting potential, exposure by inhalation is likely. l-Isoleucine produced by fermentation with Corynebacterium glutamicum CGMCC 20437 is considered as an efficacious source of the essential amino acid l-isoleucine for non-ruminant animal species. For the supplemental l-isoleucine to be as efficacious in ruminants as in non-ruminant species, it would require protection against degradation in the rumen.

13.
Amino Acids ; 56(1): 29, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583116

RESUMO

L-theanine, an amino acid component of the tea leaves of Camellia sinensis, is sold in Japan as a supplement for good sleep. Although several studies in humans and mice have reported the effects of L-theanine on brain function, only a few reports have comprehensively clarified the disposition of theanine administered to mice and its effects on concentrations of other blood amino acids. In this study, we aimed to determine the changes in the blood levels of L-theanine administered to mice and amino acid composition of the serum. L-theanine were administered to four-week-old Std-ddY male mice orally or via tail vein injection. L-theanine and other amino acids in serum prepared from blood collected at different time points post-dose were labeled with phenylisothiocyanate and quantified. The serum concentration of orally administered L-theanine peaked 15 min after administration. The area under the curve for tail vein injection revealed the bioavailability of L- theanine to be approximately 70%. L-theanine administration did not affect any amino acid levels in the serum, but a significant increase in the peak area overlapping the Glycine (Gly) peak was observed 30 min after administration. L-theanine administered to mice was rapidly absorbed and eliminated, suggesting that taking L-theanine as a supplement is safe without affecting its own levels or serum levels of other amino acids. However, considering that Gly, similar to L-theanine, is used as a dietary supplement for its anxiolytic effects and to improve sleep, determining the effects of L-theanine administration on Gly is important and needs further research.


Assuntos
Aminoácidos , Fabaceae , Humanos , Camundongos , Masculino , Animais , Glicina , Glutamatos , Disponibilidade Biológica
14.
Curr Med Res Opin ; : 1-27, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646665

RESUMO

OBJECTIVE: Patients with phenylketonuria (PKU) require a strict diet to maintain phenylalanine (Phe) levels within the desired range. However, the diet can be onerous, resulting in poor adherence. We carried out the first online national survey in Italy to better understand the perceptions, knowledge, and experiences of both patients with PKU and caregivers with the goal of improving patient outcomes. METHODS: An online survey of 35 questions to patients and 36 questions to caregivers was distributed in September 2022 through physicians and relevant Italian associations. The information collected included knowledge and impact of PKU, unmet needs, knowledge of available drugs, and satisfaction with therapy. RESULTS: Overall, 241 questionnaires were completed by 85 patients and 156 caregivers (96.0% were parents). Knowledge of the pathogenic basis of PKU was generally high. The most common patient-reported symptoms were agitation/anxiety (48.8%), fatigue (41.1%), mood disorders (39.8%), and difficulty concentrating (33.4%). Different perspectives on adherence to a low-Phe diet were observed (22.9% of patients reported strict adherence vs. 47.0% of caregivers). Drugs that allow more freedom were needed by 49.4% of patients and 61.7% of caregivers, along with a wider range of choices of non-dietary treatments (48.2% and 60.0%, respectively). Unmet informational needs of patients included PKU and pregnancy, complications, travel, sports, and transition into adult care. CONCLUSIONS: Our data showed that patients with PKU and their caregivers reported difficulties in adherence to diet therapy and indicated interest in new therapeutic approaches. Apparent differences between patient and caregiver perspectives were identified. More informational resources on PKU are needed.


Some people are born with an abnormality in a gene called phenylalanine (Phe) hydroxylase, which controls the production of an enzyme that helps convert Phe (an important amino acid that forms proteins) to tyrosine. When Phe cannot be converted to tyrosine, it builds up in the body and becomes toxic. Phenylketone bodies then form and accumulate in the blood, resulting in a disease called phenylketonuria (PKU), which can lead to intellectual disability and epilepsy. People with PKU should follow a strict low-Phe diet so that Phe levels can remain low. However, following this diet is often difficult, resulting in poor control of PKU. We carried out the first online survey in Italy to better understand the perceptions, knowledge, and experiences of patients with PKU and their caregivers. The questionnaire was distributed in Italy in September 2022. The information collected included knowledge and impact of PKU, unmet needs of patients, knowledge of available drugs, and satisfaction with therapy. Overall, 241 questionnaires were completed by 85 patients and 156 caregivers (most were parents). Knowledge of the serious consequences of PKU was generally high. The most common symptoms were agitation/anxiety (48.8%), fatigue (41.1%), mood disorders (39.8%), and difficulty concentrating (33.4%). Our data showed that patients and caregivers reported difficulties in following the strict low-Phe diet and showed interest in treatments that allowed more freedom. There were notable differences between some patient and caregiver perspectives. More informational resources on PKU and pregnancy, complications, travel, sports, and transition from child to adult care are needed.

15.
Avian Pathol ; : 1-33, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629680

RESUMO

Avian reovirus (ARV) has been continuously affecting the poultry industry in Pennsylvania in recent years. This report provides our diagnostic investigation on monitoring ARV field variants from broiler chickens in Pennsylvania. Genomic characterization findings of 72 ARV field isolates obtained from broiler cases during the last six years indicated that the six distinct cluster variant strains (genotype I-VI) continuously circulated in PA poultry, which were genetically diverse and distant from the vaccine and vaccine-related field strains. Most of the variants clustered within genotype V (24/72, 33.3%), followed by genotype II (16/72, 22.2%), genotype IV (13/72, 18.1%), genotype III (13/72, 18.1%), genotype VI (05/72, 6.94%), and genotype I (1/72, 1.38%). The amino acid identity between 72 field variants and the vaccine strains (1133, 1733, 2408, 2177) varied from 45.3% to 99.7%, while the difference in amino acid counts ranged from 1 - 164. Among the field variants, the amino acid identity and count difference ranged from 43.3% to 100% and 0 to 170, respectively. Variants within genotype V had maximum amino acid identity (94.7-100%), whereas none of the variants within genotypes II and VI were alike. These findings indicate the continuing occurrence of multiple ARV genotypes in the environment.

16.
Biotechnol Prog ; : e3471, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629737

RESUMO

Chinese hamster ovary (CHO) cells are the predominant host of choice for recombinant monoclonal antibody (mAb) expression. Recent advancements in gene editing technology have enabled engineering new CHO hosts with higher growth, viability, or productivity. One approach involved knock out (KO) of BCAT1 gene, which codes for the first enzyme in the branched chain amino acid (BCAA) catabolism pathway; BCAT1 KO reduced accumulation of growth inhibitory short chain fatty acid (SCFA) byproducts and improved culture growth and titer when used in conjunction with high-end pH-controlled delivery of glucose (HiPDOG) technology and SCFA supplementation during production. Accumulation of SCFAs in the culture media is critical for metabolic shift toward higher specific productivity and hence titer. Here we describe knocking out BCKDHa/b genes (2XKO), which act downstream of the BCAT1, in a BAX/BAK KO CHO host cell line background to reduce accumulation of growth-inhibitory molecules in culture. Evaluation of the new 4XKO CHO cell lines in fed-batch production cultures (without HiPDOG) revealed that partial KO of BCKDHa/b genes in an apoptosis-resistant (BAX/BAK KO) background can achieve higher viabilities and mAb titers. This was evident when SCFAs were added to boost productivity as such additives negatively impacted culture viability in the WT but not BAX/BAK KO cells during batch production. Altogether, our findings suggest that SCFA addbacks can significantly increase productivity and mAb titers in the context of apoptosis-attenuated CHO cells with partial KO of BCAA genes. Such engineered CHO hosts can offer productivity advantages for expressing biotherapeutics in an industrial setting.

17.
Antimicrob Agents Chemother ; : e0002224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624217

RESUMO

Candida parapsilosis has recently emerged as a major threat due to the worldwide emergence of fluconazole-resistant strains causing clonal outbreaks in hospitals and poses a therapeutic challenge due to the limited antifungal armamentarium. Here, we used precise genome editing using CRISPR-Cas9 to gain further insights into the contribution of mutations in ERG11, ERG3, MRR1, and TAC1 genes and the influence of allelic dosage to antifungal resistance in C. parapsilosis. Seven of the most common amino acid substitutions previously reported in fluconazole-resistant clinical isolates (including Y132F in ERG11) were engineered in two fluconazole-susceptible C. parapsilosis lineages (ATCC 22019 and STZ5). Each mutant was then challenged in vitro against a large array of antifungals, with a focus on azoles. Any possible change in virulence was also assessed in a Galleria mellonella model. We successfully generated a total of 19 different mutants, using CRISPR-Cas9. Except for R398I (ERG11), all remaining amino acid substitutions conferred reduced susceptibility to fluconazole. However, the impact on fluconazole in vitro susceptibility varied greatly according to the engineered mutation, the stronger impact being noted for G583R acting as a gain-of-function mutation in MRR1. Cross-resistance with newer azoles, non-medical azoles, but also non-azole antifungals such as flucytosine, was occasionally noted. Posaconazole and isavuconazole remained the most active in vitro. Except for G583R, no fitness cost was associated with the acquisition of fluconazole resistance. We highlight the distinct contributions of amino acid substitutions in ERG11, ERG3, MRR1, and TAC1 genes to antifungal resistance in C. parapsilosis.

18.
Mol Cell Biochem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625515

RESUMO

Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.

19.
Free Radic Biol Med ; 217: 173-178, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38565399

RESUMO

Chemogenetics refers to experimental methods that use novel recombinant proteins that can be dynamically and uniquely regulated by specific biochemicals. Chemogenetic approaches allow the precise manipulation of cellular signaling to delineate the molecular pathways involved in both physiological and pathological disease states. Approaches utilizing yeast d-amino acid oxidase (DAAO) enable manipulation of intracellular redox metabolism through generation of hydrogen peroxide in the presence of d-amino acids and have led to the development of new and informative animal models to characterize the impact of oxidative stress in heart failure and neurodegeneration. These chemogenetic models, in which DAAO expression is regulated by different tissue-specific promoters, have led to a range of cardiac phenotypes. This review discusses chemogenetic approaches to manipulate oxidative stress in models of heart failure. These approaches provide new insights into the relationships between redox metabolism and normal and pathologic states in the heart, as well as in other diseases characterized by oxidative stress.


Assuntos
Insuficiência Cardíaca , Animais , Oxirredução , Insuficiência Cardíaca/genética , Estresse Oxidativo , Aminoácidos
20.
Biochem Biophys Res Commun ; 709: 149811, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38569244

RESUMO

Adequate dietary intake of amino acids is imperative for normal animal growth. Our previous work using rat hepatocarcinoma Fao cells demonstrated that growth hormone (GH) resistance, coupled with a concurrent reduction in insulin-like growth factor 1 (Igf1) mRNA levels, may underlie the growth retardation associated with a low-protein diet (LPD). In this study, we investigated whether FGF21 contributes to liver GH resistance in Fao rat hepatoma cells under amino acid deprivation conditions. Mice subjected to an LPD exhibited growth retardation, compromised GH signaling in the liver, and decreased blood IGF-1 levels compared with those on a control diet. To assess the potential involvement of fibroblast growth factor (FGF) 21, produced in response to amino acid deficiency, in the development of GH resistance, we examined GH signaling and Igf1 mRNA levels in Fao cells cultured in amino acid-deprived medium. Despite the inhibition of Fgf21 expression by the integrated stress response inhibitor, an inhibitor of the eukaryotic initiation factor 2-activating transcription factor 4 pathway, GH resistance persisted in response to amino acid deprivation. Additionally, the introduction of FGF21 into the control medium did not impair either GH signaling or GH-induced Igf1 transcription. These data suggest that, in Fao cells, amino acid deprivation induces GH resistance independently of FGF21 activity. By shedding light on the mechanisms behind growth retardation-associated GH resistance linked to amino acid deficiencies, our findings provide valuable insights for clinicians in formulating effective treatment strategies for individuals facing these challenges.


Assuntos
Aminoácidos , Hormônio do Crescimento , Ratos , Camundongos , Animais , Hormônio do Crescimento/metabolismo , Aminoácidos/metabolismo , Fígado/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Transtornos do Crescimento , RNA Mensageiro/genética , Fator de Crescimento Insulin-Like I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...